
Conceptual Content Modeling and Management

The Rationale of an Asset Language

Joachim W. Schmidt and Hans-Werner Sehring

Technical University Hamburg-Harburg, Software Systems Department,
Harburger Schloßstraße 20, D-21073 Hamburg, Germany

{j.w.schmidt, hw.sehring }@tu-harburg.de

Abstract. Focused views on entities of interest – concrete or abstract
ones – are often represented by texts, images, speech or other media.
Such media views are communicated through visual or audio channels
and stored persistently in appropriate containers.
In this paper we extend a computational content-container model into
a closely coupled content-concept model intended to capture more of
the meaning – and improve the value – of content. Integrated content-
concept views on entities are modeled by the notion of assets, and our
asset language aims at two goals derived from extensive experiences with
entity modeling:
1. Expressiveness: according to Peirce [29] and others, entity model-

ing – and, therefore, also asset modeling – has to cover three different
perspectives:
– an entity’s inherent characteristics (firstness categories);
– its relationships to other entities (secondness categories);
– the systematics behind the first two perspectives (thirdness cat-

egories).
2. Responsiveness: according to Cassirer [8, 47] and others, entity mod-

eling processes, in order to be successful have to be
– open, i.e., users of an asset language must be able to adapt their

asset models according to the requirements of the entity at hand;
– dynamic in the sense that all aspects of an asset model must be

subject to inspection and adaptation at any time.
Our current experiments with asset languages are motivated by the need
for a better understanding and integration of content and concepts about
application entities. We conclude by outlining a component-based imple-
mentation technology for open and dynamic asset systems.

1 Introduction: Motivation and Rationale

The management of structured data is well understood in computer science and
so is their use in software system engineering [21, 46, 45]. Data are essentially
maintained as content of typed variables or schema-constrained databases, and
data access and manipulation is abstracted by functions or transactions and
encapsulated by software components.

The object-oriented approach, for example, aims at a seamless support of
software development from application analysis through system design to soft-
ware implementation and provides a methodological basis as well as tool support
for the realization of large-scale object systems.

A rapidly increasing class of computer applications use persistent object sys-
tems as containers for any kind of (multi-media) content. Such applications face
the problem that the computational models by which the container objects are
defined say nothing about the application concepts associated with their con-
tent. As a consequence, such systems can give only little and incoherent support
for content retrieval, presentation, change, explanation, etc.

In this paper we argue that application contents and application concepts
need to be closely coupled and represented by a single notion which we call an
asset. Assets represent intimately allied content-concept pairs which represent
and signify application entities. The content aspect of an asset holds a media
view on an entity while the concept aspect represents its allied concept view.

In section 2 of this paper we first introduce objects as providers of container
functionality and then define assets on top of container objects where the con-
cept aspect of an asset is intended to model application aspects of entities and
is not restricted to computational purposes. Section 3 discusses the expressive-
ness of an asset language and section 4 outlines such a language. In section 5
the modalities by which an asset language is made available to its users are
discussed under the heading of language responsiveness. Both asset language
expressiveness and responsiveness put particular demands on asset system im-
plementations. Section 6 summarizes aspects of an asset technology. The paper
concludes by reporting on ongoing interdisciplinary research and development
projects and refers to commercial activities.

In summary, our experiments with asset languages and systems serve essen-
tially two goals:

– advancing large-scale content management by a concept-based view on ap-
plication content and, vice versa,

– improving the representation of application concepts by means of a general-
ized notion of content.

2 Adding Meaning to Content

Object-oriented models and technology are highly appropriate in modeling dig-
ital containers for various kinds of application content and their presentation
media. However, the meaning of content, although captured in early phases of
object-oriented application analysis and software design, cannot be represented
adequately by object-oriented computer languages. Therefore, we propose an as-
set language capable of representing both computational concepts for containers
as well as application concepts for their content.

2.1 Computational Objects as Containers for Application Content

Since the early days of high-level programming the states of computations are
modeled by typed variables which hold values from predefined value sets and
which can be accessed by predefined operations:

var contents: Integer := 0;

Here a computational object of variable content is associated with the mathe-
matical concept of integer numbers and is initialized by the specific content zero.
The specification of high-level programming languages regulates the necessary
details of how to use computational objects: their lifetime and visibility or their
access from right- and lefthand-side expressions. Since algorithmic programming
takes a mathematical view on its application domains the application entities are
numbers or Booleans and, therefore, there is a perfect match between content –
e.g., the mathematical entity zero – and the associated mathematical concept of
Integer .

In software engineering scenarios where re-usability of designs, code and con-
tent is a central issue, computational objects are modeled more explicitly. By an
object-based language, for example, we can hide the above integer variable and
define integer cells with their own methods and possibly additional properties [1]:

object myIntegerCell {
var contents: Integer := 0;
method get(): Integer {return self .contents };
method set(n: Integer) {self .contents := n }; }

The cell type, IntegerCellType , is defined by the signature of the above
cell object, myIntegerCell . Cells of this kind are perfectly suited for algo-
rithmic computing, i.e., for any application where cell content is modeled by
mathematical or logical concepts which are used for computation only.

Nowadays, however, the majority of applications come from other areas –
business enterprises, e-commerce, public administration, logistics, art history
etc. – and application entities have to be mapped from their own conceptual
context into the computational concepts of a computer language. Object-oriented
analysis and design (OOAD) processes support such mapping processes which
may result in an imageContainer object definition such as

object myImageContainer {
var contents: array of byte := emptyImage;
method get(): array of byte {return self .contents };
method set(i: array of byte) {self .contents := i }; }

or, for class-based languages [1], in a corresponding class definition, ImageCon-
tainer . Classes support a more dynamic object generation by

myImageContainer := new ImageContainer; ...;

Classes also can be re-used for the definition, for example, of specialized
containers such as

Fig. 1. Preview thumbnail computed from myImageContainer.contents

class JPEGContainer refines ImageContainer {
var ...; ...;
method getThumbnail(...): SmallJPEGImageCopy

{... self .contents ... };
// computes thumbnails from JPEG content and its parameters;
// may be used for preview etc., see fig. 1

method getColorDepth(): Integer {... };
method getCompressionRate(): Integer {... }; }

myJPEGContainer := new JPEGContainer; ...;

The above example sketches a class which interprets the byte contents in
a specific way. Furthermore, it introduces a method getThumbnail() which
returns a thumbnail version of the object’s contents. It is important to note that
the contents of computational objects such as myJPEGContainer very often
serve two purposes:

– computational use, e.g., to compute thumbnails from a container’s digital
content;

– conceptual use, e.g., to be interpreted by humans as a thumbnail of some
equestrian statue (fig. 1).

Some conceptual model [6] of the notion of equestrian statue may have existed
as an OOAD document [21] in earlier phases of a software engineering project
on iconographic digital libraries but is no more available at runtime.

Consequently, we argue for a language with modeling expressiveness and
runtime responsiveness by which we can serve both computational purposes as
required for an efficient container technology as well as conceptual purposes as

requested for the deeper understanding of the application content maintained
by such containers and of the concepts associated with it.

2.2 Content-Concept Pairs as Assets for Entities

As learned from database design and from application software engineering in
general, data – or content in the above sense – does not come out of the blue
but is a result of a careful conceptualization process of the entities of interest in
some application domain.

In our approach we complement the media view on an application entity (as
represented by content, see fig. 1) by a model view represented by named and
related concepts associated with entities. Content-concept pairs – which we call
assets (see fig. 2) – can be defined, queried and manipulated as elements of our
asset language (see section 4).

In our example domain of Political Iconography some person on horseback
may be considered as a figure of political relevance and iconographic effect. Such
entity may be represented by an asset instance with an asset identifier, say,
AID1 . The content aspect of asset AID1 may contain an image of the entity
at hand as represented by fig. 1. The concept aspect describes the entity by
its characteristics (firstness) and by relationships to other entities (secondness),
for example, AID2 and AID3 . Our example asset is defined as an instance of
an asset class (thirdness), EquestrianStatue, which regulates to some extent the
systematics behind the bindings to (1) and (2).

A first sketch of asset instance AID1 may look as follows:

AID1 → [content {see fig. 1} | concept sex male (1) ...
photo (1) ...
artist AID2 (2) ...
ruler AID3 (2) ...]
EquestrianStatue (3)

Our Asset Definition Language is discussed in some detail in section 4. It
is based on experiences from entity modeling in database design and software
systems engineering.

3 On Expressive Entity Modeling

According to Peirce [29] and others (see, for example, Sowa [39]), expressive
entity modeling has to cover an entity from three different perspectives:

1. inherent characteristics of an entity (Peirce firstness categories);
2. relationships between an entity and other entities (Peirce secondness cate-

gories);
3. systematics of entity genesis as provided by the “business procedures” be-

hind legal bindings (Peirce thirdness categories) for perspectives 1 and 2.

media
view

model
view

[Content

Asset

Concept]|

Entity

Fig. 2. Entities and Assets, Overview

As an example for the three perspectives take a human who is modeled as
Person by the firstness characteristics, age, sex, nationality etc. and as Employee
by additional secondness relationships to other entities such as his head of di-
vision, task assignments, past employments etc. Description on thirdness level
would further specialize the employee as an EmployeeOfCompanyABC, for ex-
ample, by ABC’s specific business procedures for hiring, firing or promoting its
personnel or for task assignment (see also section 3.3).

Approaches such as entity-relationship modeling for database design [10]
cover essentially the firstness and secondness perspectives. Numerous ER ex-
tensions (HERM [45], . . . , UML [46]) contribute to the thirdness dimension by
various kinds of constraints (invariants, type constraints, pre- and postconditions
etc.).

As equally important as the expressiveness of an entity model are the modal-
ities by which such expressive models can be utilized, i.e., their responsiveness.
Cassirer in his work on Symbolic Forms [8, 47] studies at length the closely cou-
pled roles of content and concept for human domain understanding and empha-
sizes the open-dynamic character of content-concept use. Whitehead, as another
example, also states quite clearly, “We must be systematic, but we should keep
our systems open” [39]. Responsiveness issues are further discussed in section 5.

To summarize, the rationale behind our content-concept-based asset ap-
proach is the assumption that entities are captured by providing both a media
view based on content and a model view based on concepts. Our asset lan-
guage combines computational content management as enabled by advanced
object-oriented container technology with insights from the Peirce and Cassirer
programs for expressive and responsive conceptual modeling.

3.1 Entity Characteristics

On the level of firstness categories, assets are defined by a choice of characteristic
properties inherent to an entity. They are modeled by the asset language’s base

types – String , Integer , Boolean etc. as well as structures over it – or by
computational objects as, for example, for Date or SmallJPEGImageCopy .

asset someEquestrianStatue {
content image: JPEGContainer;
concept characteristic sex: {female, male };

characteristic paintedAt: Date;
characteristic title: String;
characteristic photo: SmallJPEGImageCopy;... }

Standard methods such as get, set, etc. need not be defined explicitly but
are generated by the asset language compiler together with standard forms for
method invocation and parameter binding (see section 6.1).

3.2 Entity Relationships

Asset relationships model an entity on the level of secondness, i.e., by its asso-
ciation to or interaction with other entities [38]. Since entities are represented
by assets, an asset relationship is essentially a named binding of the asset at
hand – the source asset – to other assets – the target assets. Target asset bind-
ings are initialized by defaults and controlled by target asset classes and their
constraints.

asset someEquestrianStatue {
content ...
concept characteristic ...

relationship paintedBy: Artist;
relationship requestBy: Ruler;
relationship depicted: Person; ... }

3.3 On the Systematics of Entity Genesis

In all mediating organizations, managed companies, organized domains, etc.
there are rules by which concrete characteristics and relationships of entities is
systematically regulated to some degree. During the analysis and design phase
of computerized support systems such systematics of entity genesis – the entity
definition on the Peirce thirdness level – are captured by various (semi-)formal
approaches. System implementation maps the resulting sets of predicates into
conditionals on the software execution level:

– object-oriented software engineering extracts such regulations from textual
documents on business procedures and maps them into object designs via
semi-formal use-case diagrams [21];

– formal program specification captures program semantics, for example, by
invariants as well as pre- and postconditions and applies predicate trans-
formers for code development [19];

– workflow systems have their own pragmatic workflow specification and en-
actment languages [49], and

– database systems enrich their schema definitions by constraints and triggers
which restrict transactions and thus protect database content.

In all cases, thirdness level entity modeling is concerned with the seman-
tics of the set of procedures which handle entities and, therefore, create and
change entity descriptions. We concentrate on the use of types and constraints
for thirdness level entity modeling and experiment with assets on various levels:

– asset language level: asset type and class definitions as well as constraints
on asset characteristics and relationships (intensional semantics, see sec-
tion 4.3);

– asset instance level: extensional asset class semantics by representative col-
lections of asset instances; exploited, for example, as training sets for auto-
matic asset classification or for learning scenarios (see section 4.3);

– asset system level: API signatures for process and workflow bindings.

In our approach thirdness issues usually remain underspecified in the sense
that details such as binding orders etc. are left open. In an asset’s content part
there is, however, ample room for all kinds of semi-formal working documents
on constraint and procedure specification.

In practice, the firstness and secondness aspects of assets are connected by
their use as initialization and manipulation parameters of thirdness “business
processes”. Looking at assets from such a work perspective we can take a dual
position [32]:

– assets for works to be which we can bind to, inspect, evaluate, etc.
– assets for work to do which we can initialize, put forward, interrupt, resume,

refine, undo, redo, etc.

4 Preview of an Asset Definition Language

As with database management, the functionality of an Asset Languages can be
subdivided into three subareas: Asset Definition (ADL), Manipulation (AML)
and Querying Languages (AQL). In this paper asset definitions are expressed in
a linguistic form – by the expressions of our Asset Definition Language – while
asset manipulation and querying is performed via interactive, form-oriented in-
terfaces generated from ADL expressions.

4.1 Content Modeling: Asset Container Objects

One of the two indivisible sides of an “asset coin” is its (reference to) content.
The content aggregated in an asset is defined in its content part and the entire
power of object-oriented container technology is employed here (see section 3):

class EquestrianStatue {
content image: JPEGContainer;
concept ... }

Details of content storage and retrieval regulate, for example,

– content storage location: an object store may contain the entire content
as indicated in the examples from section 2.1 (byte array), or just a ref-
erence to externally stored content. In the latter case the container provides
(transparent) access to the actual content. In addition issues like caching (for
repeating access), archiving (for content vanishing from an external system),
mediation (to transparently access more than one external system), etc. may
be handled.

– content delivery mode: content may be delivered en bloc (as in the case
of the byte array) or streamed, QoS parameters [40] might apply, etc.

– content access modes: content may be read-only or free for modification.
Additional regulations can exist which constrain the access to content (au-
thentication, rights, payment, . . .).

In a content part multiple content objects may be given, e.g., for providing
an image in three resolutions:

class EquestrianStatue {
content highResImage: JPEGImageReference; // for print

onlineImage: JPEGImageReference; // for web site
thumbnail: JPEGImageContainer; // for preview

concept ... }

The possibility of having more than one content container may also be used
to have the content presented by different media, or to provide various images
of the same content, e.g., photographs from different angles, with changing illu-
mination, etc.

4.2 Conceptual Content Modeling: Asset Characteristics and
Relationships

As already outlined in section 3 the concept part of an asset carries various
contributions to cover the Peirce program for entity definition. On the level
of firstness categories we provide the notion of characteristics. Characteristic
attributes can be initialized by default values or objects (of basic or user-defined
types). It is important to note, though, that characteristics are not intended for
modeling object states but for describing the characteristics of entities.

class EquestrianStatue {
content ...
concept characteristic sex: {female, male };

characteristic paintedAt: Date;
:= new Date {1800 May 20th };

characteristic title: String
:= "Bonaparte crossing the Alps";

characteristic photo: SmallJPEGImageCopy
:= image.getThumbnail(...);

... }

Additionally, asset definitions allow the specification of constraints. They
add to thirdness properties of assets. By giving a type, a domain restriction
is already posed on the characteristics. It can be further narrowed by value or
object constraints as in the following example:

...
characteristic paintedAt: Date

< new Date {1800 September } and
> new Date {1800 January };

characteristic title: String
> "Bonaparte" or > "Napoleon";

characteristic photo: SmallJPEGImageCopy
res < 100;

...

Here the characteristic attribute paintedAt is limited to the date inter-
val January to September 1800 , and title , once set, has to contain ei-
ther the string literal “Bonaparte ” or “Napoleon ” (or both, “Napoleon
Bonaparte ”). Possible comparators test for equality (“=”), lesser (“<”), greater
(“>”), different (“#”), or similar (“∼”) values. How the comparator is evaluated
depends on the object type. In the case of an object-valued characteristic it can
be constrained in each of its attributes. In the above example photo may only
have a resolution below 100.

Relationship attributes describe secondness properties of an entity. In the
same way as for characteristics, default bindings and constraints can be given
for relationships, but based on assets instead of values or objects:

class EquestrianStatue {
content ...
concept characteristic ...

...
relationship paintedBy: Artist := AID2;
// AID2 is asset for painter Jacques-Louis David
relationship requestBy: Ruler := AID3;
// AID3 is asset for emperor Napoleon Bonaparte
relationship depicted:Person:=self.requestBy;
// by default, the bindings to attributes depicted and
// requestBy are made identical
... }

Technically relationships are references to other assets. Object-oriented pro-
gramming languages hide the difference between attributes with value assign-

ment and those with object bindings – i.e., firstness and secondness use of cat-
egories (languages like C++ make a clear distinction but this is regarded as
low-level programming since the choice for using a value or a pointer it is not
motivated by the model).

In some conceptual modeling approaches a uniform treatment of attributes of
kind “value assignment” and of kind “object binding” is considered an advantage.
However, most object-oriented DDLs [9] as well as UML (via attributes and
associations) and many other conceptual modeling languages make the kind of
attribute explicit.

Our position in making an explicit distinction between attributes for char-
acteristic values and objects and for relationships to assets is additionally moti-
vated by the support a user gains from asset technology. While the characteristic
attributes form the basis for value-based asset querying in the sense of database
query languages, the relationship attributes support asset browsing and naviga-
tion.

4.3 Remarks on Asset Class Semantics

In our experiments with asset languages we distinguish two ways of defining asset
semantics. As outlined so far our asset language has an intensional semantics,
i.e., is given by (type) predicates which assets of a certain class have to fulfill.
A second kind of asset class semantics could be called extensional because asset
class semantics is based on prescribed asset instances.

Intensional Asset Class Semantics. Intensional asset class definitions are
comparable to classes in object-oriented languages and are given by class declara-
tions containing characteristic and relationship attributes with their constraints
and default bindings.

As in object-oriented languages our Asset Definition Language allows class
refinement. Refined subclasses inherit characteristics and relationships as well
as content part from the underlying base class:

class EmployeeOfCompanyABC refines Employee {
concept relationship employer: Company := ABC; }

Class definitions as discussed so far are considered static; they can be stat-
ically type-checked and compiled. If, however, a class is defined, for exam-
ple, by the constraint, Company = ABC, instead of the initializing assignment,
Company := ABC, dynamic type checking is required.

Extensional Asset Class Semantics. Extensional definitions of asset seman-
tics is essentially given by collections of prescribed asset instances. Currently
we are experimenting with collections which are either unordered (sets) or or-
dered (lists). A second criterion regulates the degree to which such prescribed
collections definitively restrict asset instances or not. If a prescribed collection is
marked as final , users can only select prescribed collection elements and the
asset class definition is reduced to an enumeration type:

class EquestrianStatue {... }
prescribed final {AID1, ..., AIDn}

Prescribed collections may also be indicated as initial which means that users
can start with any element of the collection and modify it within the boundaries
drawn by the intensional part of the class definition.

In our flagship project on Political Iconography the asset class Equestrian-
Statue , for example, is defined by

class EquestrianStatue {... }
prescribed initial AID1, ..., AIDn

where the list indicates that order is considered relevant (following Aby War-
burg’s principle of good neighborhood). By starting with a specific element from
the list, say, AIDi, a user indicates that – subjectively – this element is considered
“closest” to the new asset instance he wants to create.

Examples of host systems exploiting asset class definitions based on pre-
scribed collections are automatic content classifiers for which such instance col-
lections serve as training sets [3, 13, 52], or e-learning environments presenting
the example sets to students (see section 7).

4.4 On Signification Services

A particular service expected from an asset instance are contributions to the
identification of the entity which it represents. In our example the value of a
distinctive characteristic asset attribute, say, the attribute photo which is com-
puted from the asset’s content, may serve as an iconic entity signifier. Other
characteristics may play the role of indexical signifiers. The network of related
assets – classes and instances – supports the notion of symbolic signifiers [16].

Iconic Signification. Iconic signification is achieved through firstness cate-
gories [29]. An iconic signifier resembles for a user some similarity with some
entity. An iconic signifier re-presents the associated entity and brings it into the
user’s mind. Those sets of characteristics which make the asset an icon of some
entity are distinguished by the keyword icon . In the example below the char-
acteristic attribute photo of an instance of asset class EquestrianStatue
signifies some entity iconically. The characteristic sex , however, does not pro-
vide any signification service.

Indexical Signification. Indexical signification is, one way or the other, based
on the notion of co-occurrence and is closely related to Peirce secondness cate-
gories [29, 16]. There needs to be some matchmaking circumstance by which an
indexical signifier and its signified entity are brought together. Asset instances
provide, by definition, such co-occurrence between contents and concepts, and
asset relationship attributes establish co-occurrence when bound to other asset
instances. Furthermore, assets are supposed to support indexical signification of
application entities by asset characteristics as, for example, registrationNo :

class EquestrianStatue {
content ...
concept characteristic sex: {female, male }; ...

characteristic photo: SmallJPEGImageCopy;
characteristic registrationNo: Integer;
...
icon photo;
index registrationNo; }

Symbolic Signification. Symbolic signification makes full use of the categor-
ical structures introduces by asset classes and type systems and is, therefore,
closely related to Peirce’s thirdness level.

Classes, types and constraints contribute to symbolic signification. If, for
example, the definition of EquestrianStatue includes a relationship to artists
which are constrained to the epoch “Renaissance”, then renaissance statues may
be signified symbolically via artists.

Well-structured interfaces to large-scale content management systems make
extensive use of symbolic signification [17, 48].

5 On Asset System Responsiveness

As equally important as the expressiveness of an asset language for entity model-
ing are the modalities by which such expressive models can be utilized, i.e., their
responsiveness. According to Cassirer [8, 47] and others (see, for example, [35]),
responsive entity modeling must be

– open, i.e., the categories used for entity modeling must not be pre-defined
by fixed ontologies but need to be open for adaptation by specialization or
generalization as demanded by the application entities at hand;

– dynamic, i.e., any aspect of an entity model – all related asset instances as
well as their class and type definitions etc. – must be accessible, evaluable
and adaptable at any time.

Openness and dynamics together allow asset systems to be constantly adapted,
refined and personalized in a process which converges towards the requirements
as demanded by its users’ tasks.

5.1 Asset System Openness

In the 1920ies Ernst Cassirer already strongly requested that content-concept
pairs – which he calls symbols [8, 47] – be formed in an open context with no
restriction to predefined, fixed ontologies for concepts and categories. Humans –
Cassirer’s animal symbolicus – are able to grasp and communicate entities and
their media and model views adequately only if concepts can be openly special-
ized and generalized depending on the modeling needs of the entity at hand. In

fact Cassirer considers such differentiation efforts as the essential contribution
to entity modeling.

In programming, conceptual openness was neglected until the late 60ies when
the programming language Simula [14] first introduced object-oriented principles
into software simulation systems.

Our notion of assets corresponds closely to the notion of object. While “the
object-oriented approach to programming is based on an intuitive correspondence
between a software simulation of a physical system and the physical system
itself” [1], our asset-oriented approach to entity modeling aims at an intuitive
correspondence between a software representation of a perceptible domain and
the perceptible domain itself.

For the domain of Political Iconography, for example, our asset application
system WEL ([34], see section 7) represents thousands of political concepts re-
lated to hundreds of thousands of asset instances which serve essentially as iconic
representations of such political concepts.

[1] claims that for applications such as physical systems simulation “objects
form natural data abstractions boundaries and help focus on system structure
instead of algorithms”. For asset-orientation we make a similar claim by referring
to the substantially improved

– analogy between asset models and application domains;
– resilience of the asset models;
– reusability of the components of the asset model.

The major single property which supports such demands is the reusability
of asset components, i.e., the easy use of an asset in more than one context. As
for objects we demand, for example, that asset classes be reused by importing
them into other classes and a generic asset class be reused by instantiating it
with different parameters.

The subsequent asset class definition specializes equestrian statues depicting
only female equestrians:

class FemaleEquestrianStatue refines EquestrianStatue {
concept characteristic sex: {f,m } = f; ... }

The technology (see section 6) required for asset system openness resembles
to some extent modern object-oriented language compiler technology. However,
it also has to address the issue of co-existing populated asset schemata and their
cooperation.

5.2 Asset System Dynamics

Besides openness there is a second demand, also already strongly requested by
Cassirer. He argues for a maximum of dynamic support for the process of asset
system use and improvement. This request is in contrast to systems which force
users to leave their actual working process and go through lengthy phases of
redefinition, redesign, conversion, etc. Only an open and dynamic asset system

can be adapted, refined, recompiled, personalized etc., towards the requirements
needed by its users’ tasks.

A prerequisite of a dynamic asset system is online asset evaluation. While the
well-structured concept aspect of assets – asset instance as well as class defini-
tions – can benefit from database query technology, the semi-structured content
aspect of assets requires search and indexing technology from information re-
trieval. Asset systems offer interfaces for combined queries running against both
sides, asset content and concepts.

6 Asset Compilation and Configuration Technology

Following our extensive tradition in persistent languages R&D [30, 33, 24] we
are intensely involved in the development of software systems for asset language
environments [31]. Our demand for asset system responsiveness in the above
sense requires dynamic openness as well as support for asset re-usability and
sharing. Such demands disallow asset systems implementation by conventional
compiler component and phasing technology:

– dynamic openness implies the need for runtime redefinition and inspection
of assets and of their implementing components each time a user supplies a
new asset definition or personalizes an existing one;

– re-usability and sharing requires that two asset system components have to
cooperate if somebody provides assets for a domain which somebody else
wants to use. Such cooperation structures change dynamically with asset
definitions;

– working with personalized asset definitions involves that their redefined com-
ponents have to be able to deal with existing asset instances created accord-
ing to a schema used previously.

For asset systems implementation we take a two-step approach: the first step
is driven by an asset model compiler, the second is based on a module configu-
rator. The compiler translates ADL definitions into a set of modules of different
kinds which form the basis for implementing that model. The configurator cre-
ates the modular structure of the executable target system for asset modeling
and management. This way, we achieve our goal of an open dynamic asset system
without paying the performance penalty for runtime interpretation [15] which –
as experience from other projects show – could be prohibitively high.

6.1 An Asset Language Compiler

Our model compiler translates ADL asset definitions into the object model of
some programming language. The current prototype uses Java as its target lan-
guage. The compiler generates a set of interfaces and classes which reflect the
asset definitions through method declarations which the compiler invents based
on the characteristics and the relationships of the assets.

implementation

AbstractAsset

Asset AbstractMutableAsset

MutableAsset NewAsset

AssetImpl

lifecyclemodel

JDBCAsset

jdbc

CMAsset

CM3Asset CM4Asset

CM40Asset CM41Asset

coremedia

...

some.project

distribution

client

AssetStub

HTTPAsset SOAPAsset

mapping

AssetAdapter

AbstractA

A AbstractMutableA

MutableA NewA

clientmodule

Fig. 3. Compiler generated objects

By and large, the method signatures conform to the JavaBeans standard [41],
defining methods according to the name pattern getC() and setC() for a char-
acteristic attribute c and addR() , removeR() , and hasR() for a relationship
attribute r. In fact several interfaces are created for each asset class which reflect
certain life cycle states of the assets, each with life cycle methods to change state
(for a thorough overview see fig. 3).

Besides the interfaces for the assets themselves a set of auxiliary interfaces
is generated:

– iterators [18] to handle collections of assets,
– factories for creating asset instances according to the design pattern “factory

method” [18],
– query interfaces for creating query objects, equipping them with the query

expression and evaluating them to iterators, and finally
– visitors [18] to distinguish between the possible classes (instead of having a

“type switch” operator [1]) of an asset and to determine an asset’s state in
a type-safe manner.

The interfaces are implemented by classes which reflect the kind of a module
(see section 6.2), thus separating relevant concerns of asset system construc-
tion. Asset constraints are compiled into the modification methods (set, add,
remove), thus having them checked each time a modification is requested (in

terms of JavaBeans: they are constrained properties; see also [23]). In addition
the modification methods send notifications whenever a modification is applied
(bound properties). The value and binding initializations are compiled into the
factory methods. In principle all methods of all interfaces are implemented in a
way that they can be configured for auditing each invocation to support moni-
toring of work in progress and archival of works.

As a result of the open dynamics of asset systems the model compiler accepts
asset declarations in two modes. One is to simply compile ADL statements as
described throughout this paper. In this case the compiler generates the inter-
faces and classes necessary for the modules of a desired system. To make use
of the openness the compiler can also be told that an asset definition refines an
existing model. In this case the compiler first computes the integrated model
derived from the existing and the new asset declarations and then builds the in-
terfaces and classes. In addition, further classes for mapping between the models
are generated for the mapping component outlined in section 6.2.

The compiler has a single front-end for parsing and checking asset definitions
in the ADL. For the various kinds of modules to be produced there is one back-
end for each one. To be able to generate asset systems with different back-end
configurations the compiler is appropriately parameterized. In ongoing research
we are working on growing sets of such back-end configurations aiming at a
pattern library for asset system generation. For additional technical details please
refer to [36].

6.2 On Asset System Modules

For asset system implementation we distinguish several kinds of modules. The
model compiler creates sets of classes for each instance of a module kind. They
form the basis for a domain-specific software architecture with a generated im-
plementation [50]. Since the software artifacts are generated to work in concert
we call them modules, however, in fact they enjoy essential properties of software
components [43, 2], the most important one being their statelessness.

Statelessness is an essential prerequisite for module exchange at runtime.
Statelessness is relevant because the demand for dynamic openness leads to run-
time module modification whenever a user changes its asset model. In such cases
the model compiler is employed, and the modules built are used to reconfigure
the asset management system.

As mentioned above the model compiler adds individual methods to the
object classes generated for asset classes. To allow random module combinations
all modules have a uniform interface. It is generic so that applications developed
against the module interface do not break due to changes requested by dynamic
openness. The specific requirements of a concrete model are reflected by the
asset parameters of the modules’ operations.

So far we have identified five kinds of modules for asset system implementa-
tion (sketched in fig. 4): client modules and server modules as well as modules
for mediation, distribution and mapping. These alternatives have satisfied all
demands of our current conceptual content management projects, i.e., demands

server module

assets
objects

adapted assets
assets

proxies
assets

unified view
view 1 view 2

module of another
component

XML documents
API

mediation module

distribution module

mapping module

client module

Fig. 4. Asset system module configuration

from dynamic openness as well as from non-monotonic and monotonic person-
alization, replication, access control, etc.

Modules for Asset Clients and for Asset Servers. Modules of the first
kind – client modules – are based on persistence and retrieval services as pro-
vided by standard components. The individual contribution of a client module
is the mapping of objects which represent assets down to the employed standard
component and, conversely, the mapping of data retrieved from that component
up into the asset model.

ADL expressions serve as abstract descriptions of both application and the
data layer (comparable, for example, to the interface modules of [22]). There
may be different compiler back-ends for different off-the-shelf technologies, e.g.,
different database systems. Currently we use JDBC [42] and file access (the top
of the generator hierarchy for JDBC can be seen in fig. 3, package jdbc). The
back-ends contain the knowledge on how to create a mapping for a particular
software product.

The classes generated from an ADL expression to form a client module have
to be able to cope with the fact that schemas evolve and that there is data
created for outdated schema versions [4]. Since the third-party systems we are
using are not capable of allowing populated and versioned schemas to coexist and
having the same functions applied to both of them, evolution has to be handled
by the asset management system [27]. Old client modules (and the standard
component they use) are conserved while fresh client modules for the new model
are generated. To access multiple base systems in a uniform way, a mediation
module (see next section) is employed. Client and mediation modules together
form mediators in the sense of [51].

Server modules are the counterpart of client modules and offer the asset
management system functionality as a service to clients. For clients to be able
to use such services a standard protocol has to be applied. So far we use XML
documents with a schema generated to reflect the asset definitions and transport

them by means of HTTP. We have begun work on server module development
for WebServices [5] with generated descriptions given in the WDL [11].

Modules for Mediation, Distribution and Mapping. The are three further
kinds of modules which are mentioned only briefly in this paper: mediation,
distribution and mapping modules.

Mediation modules are capable of delegating calls to other modules and of
combining their responses in different ways. They are the crucial part of many
module configurations, especially those involving openness.

Distribution modules offer remote communication between two components.
They consist of two parts, one for each of the communication partners. Their
service is similar to RPC and the two parts correspond to stubs and skeletons.
However, instead of using a standardized marshalling format they exchange XML
documents with a generated schema (comparable to the suggestion of [37]).

A final module kind which is highly relevant to asset system openness are
mapping modules. They support model mapping [4] thus allowing modules gen-
erated from different ADL schema revisions to communicate. A mapping module
is made up of adapters [18] which convert assets according to the ADL models in-
volved. Adapters wrap an object of a class generated for a base model and fulfill
the interface required by the derived model (see package mapping in fig. 3).

Mapping issues are covered by a module kind of its own rather than integrat-
ing it into the other kinds of modules so that it can be plugged dynamically [26].

7 Perspective: Interdisciplinary Projects in Conceptual
Content Management

The field of algorithmic programming has had from the very beginning a rather
clear understanding of its underlying computational models. Nevertheless, expe-
rience from countless software engineering projects have been necessary to pro-
vide the basis for the development of modern high-level programming languages,
their efficient implementation technology and their effective environments for
large-scale software development. Following similar arguments we see an urgent
need for extensive interdisciplinary project-based experience in conceptual con-
tent modeling and management.

Many of the insights leading to the asset approach presented here have been
gained in the project Warburg Electronic Library [34, 7]. The WEL system [48]
was developed in an interdisciplinary joint project between the Art History de-
partment at Hamburg University and our Software Systems Institute. By now
the WEL system has matured to a productive system that is used by hundreds
of researchers internationally and is being extended in cooperation with several
institutions.

The interdisciplinary WEL project was founded right from the start on exten-
sive domain material on Political Iconography and on immense user experience
from the area of art history. In the meantime, further content collections and

methodological experiences have been provided by other project partners, e.g.,
from the area of commercial advertisements or from media industry.

Political Iconography (PI) proved to be a perfect application domain for
an interdisciplinary project on conceptual content modeling and management.
Basically, PI seeks to capture the semantics of key concepts in the political realm
under the assumption that political goals, roles, values, means, etc. require mass
communication which is implemented by the iconographic use of image-oriented
content.

Martin Warnke, our project partner in art history, started his (paper-based)
work on PI in the early 80ies. To date he and his colleagues have identified
about 1,500 named political concepts and collected more than 300,000 records
on iconographic works relevant to PI. In 1990 Warnke was recognized for his work
by the Leibniz-Preis, one of the most prestigious research grants in Germany.

A major use of the WEL is its application for educational purposes in e-
learning scenarios [25] exploiting its advanced functionality for

– customization of assets to establish thematic views on a domain, and
– personalization of the thematic views by students to construct individualized

views.

personalize

(re-) structure
and improve

publicize

customize

feedback:
- notification
- negotiation
- takeover
- ...

WEL for
Political Iconography,

Martin Warnke

WEL for
Mantua and the

Gonzaga,
Seminar 2002

WEL for
Virtue,

Student Group 3

Fig. 5. Asset system for Art History education: A seminar on Mantua and the Gonzaga

Fig. 5 outlines the use of customization and personalization in an art history
seminar on Mantua and the Gonzaga. The all-encompassing PI asset collection
(owned by art historian Warnke) is first customized into an asset collection for
the seminar project Mantua and the Gonzaga (owned by the supervising research
assistants). The main objective of individual student projects in that seminar
is to further customize and extend the seminar assets, structurally as well as

content-wise. Publicizing the final content in some form of media document – a
traditional report or an interactive web page – constitutes another educational
objective of the seminar.

We conclude by pointing out that many web application projects are es-
sentially online content management projects. Therefore, most of our R&D
projects [17, 28, 44] as well as some of our commercial activities [12, 20] profit
substantially from our insight in conceptual content modeling and management.

Acknowledgement. We would like to express our thanks to the members of the
Software Systems Institute, in particular, Rainer Müller, Michael Skusa, Ulrike
Steffens and Axel Wienberg, and Florian Matthes, now Technical University
of Munich, Germany. Last but not least our warm thanks to Professor Martin
Warnke, Art History Department at the University of Hamburg.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer-Verlag New York, Inc., 1996.

2. U. Aßmann. Invasive Software Composition. Springer-Verlag, 2003.
3. Stefan Berchthold, Bernhard Ertl, Daniel A. Keim, Hans-Peter Kriegel, and

Thomas Seidl. Fast Nearest Neighbor Search in High-Dimensional Spaces. In
Proc. 14th IEEE Conf. Data Engineering. IEEE Computer Society, 1998.

4. Philip A. Bernstein and Erhard Rahm. Data Warehouse Scenarios for Model
Management. In Alberto H. F. Laender, Stephen W. Liddle, and Veda C. Storey,
editors, Proc. 19th International Conference on Conceptual Modeling, volume 1920
of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 2000.

5. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture, W3C Working Draft.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/.

6. Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Topics in Information Systems. Springer-Verlag, 1984.

7. Matthias Bruhn. The Warburg Electronic Library in Hamburg: A Digital Index of
Political Iconography. Visual Resources, XV:405–423, 2000.

8. Ernst Cassirer. Die Sprache, Das mythische Denken, Phänomenologie der Erken-
ntnis, volume 11-13 Philosophie der symbolischen Formen of Gesammelte Werke.
Felix Meiner Verlag GmbH, Hamburger Ausgabe edition, 2001-2002.

9. R.G.G. Cattel, Douglas Barry, Mark Berler, Jeff Eastman, David Jordan, Craig
Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez, editors. The Object
Database Standard: ODMG 3.0. Morgan Kaufmann, 2000.

10. Peter P. Chen. The Enity-Relationship Model: Toward a Unified View of Data. In
Douglas S. Kerr, editor, Proceedings of the International Conference on Very Large
Data Bases, September 22-24, 1975, Framingham, Massachusetts, USA, page 173.
ACM, 1975.

11. Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) Version 1.2 Part 1: Core
Language. www.w3.org/TR/wsdl12/, June 2003.

12. Homepage of the CoreMedia c© AG. www.coremedia.com, 2003.

13. Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines (and other kernel-based learning methods). Cambridge University Press,
2000.

14. O. Dahl and K. Nygaard. Simula, an Algol-based simulation language. Commu-
nications of the ACM, 9(9):671–678, 1966.

15. C.J. Date. What Not How – The Business Rules Approach to Application Devel-
opment. Addison-Wesley, 2000.

16. Terrence W. Deacon. The Symbolic Species: The Co-evolution of Language and the
Brain. W. W. Norton & Company, Inc., 1997.

17. EURIFT Information Portal. www.eurift.net, 2003.

18. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

19. Eric C.R. Hehner. A Practical Theory of Programming. Monographs in Computer
Science. Springer-Verlag, 1993.

20. Homepage of the infoAsset c© AG. www.infoasset.de, 2003.

21. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

22. Manfred A. Jeusfeld. Generating Queries from Complex Type Definitions. In
Franz Baader, Martin Buchheit, Manfred A. Jeusfeld, and Werner Nutt, editors,
Reasoning about Structured Objects: Knowledge Representation Meets Databases,
Proceedings of 1st Workshop KRDB’94,, volume 1 of CEUR Workshop Proceedings,
1994.

23. H. Knublauch, M. Sedlmayr, and T. Rose. Design Patterns for the Implementation
of Constraints on JavaBeans. In NetObjectDays2000, Erfurt, Germany. 2000.

24. F. Matthes, G. Schröder, and J.W. Schmidt. Tycoon: A Scalable and Interoperable
Persistent System Environment. In Malcom P. Atkinson and Ray Welland, editors,
Fully Integrated Data Environments, ESPRIT Basic Research Series, pages 365–
381. Springer-Verlag, 2000.

25. Hermann Maurer and Jennifer Lennon. Digital Libraries as Learning and Teaching
Support. Journal of Universal Computer Science, 1(11):719–727, 1995.

26. Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration with plug-
gable composite adapters. In Software Architectures and Component Technology.
Kluwer, 2000.

27. Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John My-
lopoulos, Joachim W. Schmidt, Carson Woo, and Eric Yu. A Three-Faceted View
of Information Systems. Communications of the ACM, 41(12):64–70, 1998.

28. Rainer Müller, Claudia Niederée, and Joachim W. Schmidt. Design Principles
for Internet Community Information Gateways: MARINFO – A Case Study for a
Maritime Information Infrastructure. In V. Bertram, editor, Proceedings of the 1st
International Conference on Computer Applications and Information Technology
in the Maritime Industries (COMPIT 2000), pages 302–322, April 2000.

29. C.S. Peirce. Collected Papers of Charles Sanders Peirce. Harvard University Press,
Cambridge, 1931.

30. Joachim W. Schmidt. Some High Level Language Constructs for Data of Type
Relation. ACM Transactions on Database Systems, 2(3):247–261, 1977.

31. Joachim W. Schmidt, Gerald Schröder, Claudia Niederée, and Florian Matthes.
Linguistic and Architectural Requirements for Personalized Digital Libraries. In-
ternational Journal on Digital Libraries, 1(1):89–104, 1997.

32. Joachim W. Schmidt and Hans-Werner Sehring. Dockets: A Model for Adding
Value to Content. In Jacky Akoka, Mokrane Bouzeghoub, Isabelle Comyn-Wattiau,
and Elisabeth Métais, editors, Proceedings of the 18th International Conference on
Conceptual Modeling, volume 1728 of Lecture Notes in Computer Science, pages
248–262. Springer-Verlag, November 1999.

33. J.W. Schmidt and F. Matthes. The DBPL Project: Advances in Modular Database
Programming. Information Systems, 19(2):121–140, 1994.

34. J.W. Schmidt, H.-W. Sehring, M. Skusa, and A. Wienberg. Subject-Oriented Work:
Lessons Learned from an Interdisciplinary Content Management Project. In Alber-
tas Caplinskas and Johann Eder, editors, Advances in Databases and Information
Systems, 5th East European Conference, ADBIS 2001, volume 2151 of Lecture
Notes in Computer Science, pages 3–26. Springer, September 2001.

35. Christiane Schmitz-Rigal. Die Kunst offenen Wissens, Ernst Cassirers Epistemolo-
gie und Deutung der modernen Physik, volume 7 of Cassirer-Forschungen. Ernst
Meiner Verlag, Hamburg, 2002.

36. Hans-Werner Sehring. Konzeptorientiertes Content Management: Modell, Sys-
temarchitektur und Prototypen. PhD thesis, Arbeitsbereich Softwaresysteme, Tech-
nische Universität Hamburg-Harburg, Deutschland, 2003.

37. German Shegalov, Michael Gillmann, and Gerhard Weikum. XML-enabled work-
flow management for e-services across heterogeneous platforms. The VLDB Jour-
nal, 10(1):91–103, 2001.

38. John Miles Smith and Diane C. P. Smith. Database abstractions: Aggregation.
Communications of the ACM, 20(6):405–413, 1977.

39. John F. Sowa. Knowledge Representation, Logical, Philosophical, and Computa-
tional Foundations. Brooks/Cole, Thomson Learning, 2000.

40. W. Stallings. Networking Standards: A Guide to OSI, ISDN, LAN, and MAN
Standards. Addison-Wesley, 1993.

41. Sun Microsystems. JavaBeans Specification. java.sun.com/products/javabeans/,
2003.

42. Sun Microsystems. JDBC Technology. java.sun.com/products/jdbc/, 2003.
43. C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley, 1998.
44. Hompage of the TeFIS project. www.sts.tu-harburg.de/projects/TuTechFoBe/,

1999.
45. Bernhard Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-

nology. Springer-Verlag, 2000.
46. Unified Modeling Language Resource Center. www.rational.com/uml/, 2003.
47. Donald Verene, editor. Ernst Cassirer: Symbol, Myth, and Culture. Essays and

Lectures of Ernst Cassirer 1935-1945. Yale University Press, 1979.
48. Homepage of the Warburg Electronic Library. www.welib.de, 2003.
49. Homepage of the Workflow Management Coalition. www.wfmc.com, 2003.
50. S. White and C. Lemus. Architecture Reuse Through a Domain Specific Language

Generator. In Proceedings of the Eighth Workshop on Institutionalizing Software
Reuse, 1997.

51. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25:38–49, 1992.

52. Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In Proc. 14th International Conference on Machine Learning,
pages 412–420. Morgan Kaufmann, 1997.

