
Beyond Databases: An Asset Language for
Conceptual Content Management

Hans-Werner Sehring and Joachim W. Schmidt

Technical University Hamburg-Harburg, Software Systems Department,
Harburger Schloßstraße 20, D-21073 Hamburg, Germany

{hw.sehring,j.w.schmidt }@tu-harburg.de

Abstract. Innovative information systems such as content management
systems and information brokers are designed to organize a complex
mixture of media content – texts, images, maps, videos, . . . – and to
present it through domain specific conceptual models, for example, on
sports, stock exchange, or art history.
In this paper we extend the currently dominating computational con-
tainer models into a coherent content-concept model intended to capture
more of the meaning – thereby improving the value – of content. Inte-
grated content-concept views on entities are modeled using the notion of
assets, and the rationale of our asset language is based on arguments for
open language expressiveness [19] and dynamic system responsiveness [8].
In addition, we discuss our experiences with a component-based imple-
mentation technology which substantially simplifies the implementation
of open and dynamic asset management systems.

1 Introduction: On Content-Concept Integration

Important classes of innovative information systems such as content management
systems and information brokers are designed to organize a complex mixture of
media content – texts, images, maps, videos, . . . – and to present it through
domain specific conceptual models [6], for example, on sports, stock exchange,
or art history.

Traditional implementations of such information systems reflect this com-
plexity through their software intricacy resulting from a heterogeneous mix of
conventional database technology, various augmentations by text, image or geo
functionality (or just by blobs) and through additional organizational principles
from domain ontologies [25, 5].

In this paper we argue for a homogeneous basis for conceptual content man-
agement and present

– an integrated content-concept model – based on so-called assets [21] –,
– an asset language and its conceptual foundation [19], [8], as well as
– an implementation technology and architecture.

Our work is inventive essentially due to the following three contributions:

1. Content is always associated with its concept and represented by assets, i.e.,
content-concept-pairs. In a sense, assets generalize the notion of typed val-
ues or schema-constrained databases. Assets represent application entities,
concrete or abstract ones;

2. Asset schemata are open in the sense that users can change asset attributes
on-the-fly and any time, thus guaranteeing best correspondence with the
entity-at-hand;

3. Asset management systems are dynamic, i.e., the system implementation
changes dynamically following any on-the-fly modification of an asset schema;
this requirement demands a specific system modularization and an innova-
tive system architecture.

Our paper is structured as follows: after a short introduction of our asset
language (section 2) we discuss the essentials of open and dynamic asset-based
modeling and present an extensive example from the domain of art history (sec-
tion 3). In section 4 we argue the benefits of asset compilation and its advantages
for software system construction. The overall modularization and architecture
of asset-based information systems are presented in section 5. We conclude with
a short summary and an outlook into further applications of asset-based tech-
nology.

2 An Asset Language for Integrated Information
Management

Assets represent application entities by content-concept-pairs (fig. 1). Following
observations of [8] and others, neither content nor a conceptual model of an
entity can exist in isolation. The conceptual part is needed to explain the way
content refers to an entity. Content serves as an existential proof of the validity
of concepts.

The content facet of assets is managed through object-oriented multimedia
container technology. Assets contain handle objects referring to pieces of content.

To support expressive entity representations the concept facet is given by
three contributions:

1. characteristic values,
2. relationships between assets, and
3. rules (types, constraints, . . .).

Characteristic values describe entities by their immanent properties. Though
the values may change one value is always assigned. Relationships between assets
describe entities by their relation to others. Such relations may be changed or – in
contrast to characteristic values – even be removed. Regular assertions describe
facts about a set of similar assets. Type and value constraints on characteristics
and relationships fall in this category.

Thus, the notion of assets follows closely the theoretical work of [19] (firstness,
secondness, thirdness) and [8] (indivisibility of content and concept).

media
view

model
view

[Content

Asset

Concept]|

Entity

Fig. 1. Assets represent entities by [content | concept]-pairs

As already argued in the introduction, a conceptual content management
system has to be based on a responsive dynamic model to adequately represent
changing entities [21]. For expressive entity description and responsive domain
modeling we propose an asset language to be employed to notate individual
asset definitions and their systematics. Our asset language syntax corresponds
to modern class-based languages [1].

An alternative to such a linguistic approach would be the use of a generic
model to which the intended domain model is mapped. In this case users would
have to face all the problems implied by an on-the-fly translation between their
intended entity model and the generic model (“mentally compile and deci-
pher” [10]).

As an asset definition language the language is used to define asset classes.
The following code gives an example of an asset class definition:

class Equestrian {
content reproduction : java.awt.Image ...
concept

characteristic yearOfCreation : java.util.Calendar
characteristic medium : de.tuhh.sts.wel.Media
relationship painter : Artist
relationship epoch : Epoch
constraint epoch = painter.epoch
...

}

The body of a class definition contains two sections. Under content refer-
ences to pieces of content are defined by content handles. Their type is given
in the class definition. Valid types are defined by some object-oriented language
underlying the asset language. Currently we use Java for this purpose.

The conceptual part of entity descriptions is formalized in the concept
section. Here the contributions discussed above can be found: characteristics,
relationships, and rules.

Definitions starting with characteristic and relationship define at-
tributes which can be set for any instance of a defined class. Each of these is
identified by a name. A type for actual values or bindings is given after the
colon. In the case of characteristics this is a Java class again. In the example
shown above the standard Java class Calendar and the application-specific
class Media are used. For relationships an asset class is given which constrains
the type of assets referred to. If the class name is followed by an asterisk (“*”)
it is a many-to-many relationship binding a set of asset instances.

Constraints pose value restrictions on the attributes of all instances of one
asset class. In the above example it is defined that the epoch of the equestrian
artwork has to be the same as the epoch of the artist (if one is bound). In
constraint statements all attributes of the current class can be used plus the
attributes of bound assets.

In the example the epoch binding for the current Equestrian instance is
compared to the corresponding binding of the related Artist instance. For this
to work the asset class Artist needs to define an epoch relationship to Epoch
assets, just like Equestrian .

Possible comparators in constraint expressions test for equality (“=”), lesser
(“<”), greater (“>”), different (“#”), or similar (“∼”) values or bindings. How
the comparator is actually evaluated depends on the compared attributes’ types.
For characteristics, evaluation is done according to a Java Comparator . For re-
lationships the comparisons are mapped to set relations (equality, inclusion, . . .).
In both cases, similarity is decided in an implementation-dependent manner (see
below). Expressions can be combined using the logical operators and , or , and
not .

Classes can be defined as subclasses of existing ones using the refines
keyword:

class MedievalEquestrian refines Equestrian {
concept constraint epoch = middleAges

}

This way definitions are inherited by the subclass. Here, a constraint on epoch
is added. Inherited definitions can be overridden.

Another way to define asset classes is by giving an extensional definition.
This is done by naming a set of asset instances which define a class. There are
two variants of the extensional class definition. The first one gives a fixed set of
instances which are the complete extent of an asset class:

class Equestrian definedby { e1, e2, e3 }

This way the asset class Equestrian is introduced as an enumeration type
with possible instances e1 , e2 , and e3 .

For the second variant the set of asset instances serves as an example for the
intended extent of the new asset class. A definition like

class Equestrian definedby ∼ { e1, e2, e3 }

defines Equestrian to be the class of all instances similar to e1 , e2 , and e3 .
To decide upon similarity, conceptual content management systems incorporate
retrieval technology [3]. The set of asset instances is used as a training set.

For the management of asset instances statements of the asset language serve
as an asset query and manipulation language. A create operation is used for
the creation of asset instances. The following is an example for the instantiation
of an Equestrian instance:

create Equestrian {
medium := de.tuhh.sts.wel.Media.STATUE
painter := rubens

}

Here, STATUEis a constant class variable of Media holding a Java object for
the media type “Statue” (singleton [12]). rubens is the name of an Artist
asset instance.

A variant of the create operation allows to name a prototype instance
instead of the set of initial bindings: create Equestrian eqProto

For updates the modify operation is used. For example, the update of an
Equestrian instance named eq1 is done by:

modify eq1 {
medium := de.tuhh.sts.wel.Media.STATUE
painter := rubens

}

A variant similar to that of create allows the naming of a prototype instance
instead of the set of new value and instance bindings: modify eq1 eqProto

The lookfor operation is used to retrieve asset instances. It searches for all
instances of a given class. As query parameters all characteristic and relationship
attributes can be constrained. An example query for Equestrian instances
which are statues by Rubens is:

lookfor Equestrian {
medium = de.tuhh.sts.wel.Media.STATUE
painter = rubens

}

Due to space limitations not all aspects of the asset language can be explained
in this section. The detailed definition of the asset language can be found in [23].

3 Asset-based Modeling: A Case for Open and Dynamic
Information Systems

Asset definitions usually depend on considerations like the state of the entities
to describe, the users’ expertise, their current task, etc. For various reasons such
influencing factors may change over time (see [8]):

– The observed entities change. Thus, their descriptions have to be adjusted.
This is true even for class definitions because in different states an entity
is described by different sets of contents, characteristics, relationships, and
constraints.

– The users’ expertise influences their information needs. Usually users are
not willing to (explicitly) provide data they do not consider interesting.
For communication with others, though, assets need to be tailored to the
receiver’s needs.

– A user can view an entity while being in different contexts, e.g., depending
on the task for which an asset is needed. Different asset definitions may be
needed when changing context.

Thus, openness and dynamics as defined in the introduction are important
properties of conceptual content management systems for a variety of reasons.

In application projects we observed that knowledge about application entities
is captured by modeling the processes in which they have been created and used.
Soft-goals like reasons, intentions, etc. of the creation of entities are recorded in
such applications (see also [29]).

In the project Warburg Electronic Library (WEL) a prototypical open dy-
namic conceptual content management system has been developed [22]. In appli-
cation projects our project partners create large numbers of assets modeling their
domain. One primary application is art history [7]. Our project partners from
art history use the WEL to pursue research in the field of Political Iconography.
For content they collect reproductions of artworks (see fig. 2(a)).

(a) Media Content for the Con-
cept “Equestrian Statue”

regent Napoleon I. : Emperor
motives mountain, alps, horse, hand

text Bonaparte, Hannibal, Carolus

reference Carolus Magnus Crossing the
Alps, Hannibal Crossing the Alps

artist Jacques-Louis David : Painter
title “Bonaparte Crossing the Alps...”

(b) Conceptual Model of one “Equestrian
Statue”

Fig. 2. Asset Facets

The conceptual part of assets records the historical events which prove that
the artifact under consideration has been used to achieve political goals. Typical

information is the creation date and location of a piece of art, relationships
to the regent ordering it and the artist who created it, relationships to other
works which are influential, information on the way it has been presented, etc.
(see fig. 2(b)). Sets of asset instances define categories which name political
phenomena. Additional constraints reveal how products of art work for political
reasons.

From a computer science perspective the WEL is an important project for
understanding the nature of conceptual content management systems. It serves
as a field study with students and scientists. The WEL has been online for several
years now [27]. Its services are used by some hundred scientists worldwide, mainly
from the humanities. In cooperation with our project partners it has been used
as an e-learning tool in several seminars during the past years.

As a research tool the WEL maintains a set of assets available to a research
community. Researchers employ openness and dynamics to model their hypothe-
ses. They can do so without interfering with others and without allowing them to
see their results. When there are valuable findings a community can choose to in-
tegrate the assets of one of its members. For this, the WEL maintains open asset
models and the corresponding asset instances on a per-user basis. Within scopes
controlled through group membership asset instances can be shared among users.

In e-learning scenarios assets are prepared as course material. The body of
asset instances is maintained for teaching purposes or, as is the case with the
WEL, research efforts being carried out. Openness is needed by both teachers
and students [ML95]. Teaching staff can select and adapt assets as teaching
material for a course to be supported. In seminars and lab classes students can
modify this material. Such a process is illustrated in fig. 3. This way, students
get hands-on experience with the definition of concepts, the validation of models,
the creation of content, etc.

4 Information System Construction by Asset Compilation

Domain experts formulate asset models using the asset language introduced in
section 2. As discussed in the previous section there is a demand for open systems
allowing the modification of existing assets. For asset management systems to
meet the openness requirement these are automatically created based on such
domain models. As part of the asset technology this is done by an asset compiler.

The compilation process bears a resemblance to modern software-engineering
approaches like Model Driven Architecture (MDA) [18]. The asset compiler cre-
ates a platform independent model from a domain model. The platform indepen-
dent model is then translated into a running software system. The translation of
domain models is described in this section. The following section concentrates
on actual implementations.

As a first step in the compilation process a data model is created from asset
definitions given in the asset language (comparable, for example, to the interface
modules of [14]). The current asset compiler uses Java as its target language. The
data model consists of Java interfaces. Additional parameterizations of standard

personalize

(re-) structure
and improve

publicize

customize

feedback:
- notification
- negotiation
- takeover
- ...

Political Iconography,
Master WEL Version

Mantua and the
Gonzaga,

Seminar WEL Version

Virtue,
Student WEL Version

Fig. 3. Open Dynamic Asset Use in the WEL for E-Learning

components are created as needed (see next section). Examples are schemata for
databases or content management systems, XML schemata, etc.

For each asset class a Java interface is created. Definitions of subclasses are
mapped to subtypes. The interfaces adhere to the JavaBeans standard [13]. Ac-
cess methods (“getter” and “setter”) are defined for characteristics and relation-
ships. Class-level (thirdness) contributions are implemented in the operations of
classes generated according to the interface definitions: constraints are mapped
to constrained properties which throw a VetoException when the constraint
is violated (see also [15]). Rules are expressed by bound properties which cause
the invocation of further methods under the condition set by a constraint.

The UML class diagram in fig. 4 gives an overview of the generated code.
The packages lifecyclemodel and implementation contain generic inter-
faces and classes which are part of the runtime environment of a conceptual
content management system. A package like some.project is generated by the
asset compiler.

The interfaces from package lifecyclemodel reflect possible states in the
life of an asset instance. They define methods which allow state transitions as
shown in the state chart in fig. 5.

Interfaces reflecting an asset model are created as subtypes of those generic
ones. In fig. 4 the interfaces shown in package some.module are created for a
defined asset class A. These introduce methods which reflect the asset classes’
characteristics, relationships, and constraints as explained above.

Not shown in fig. 4 are additional interfaces which describe the management
of asset instances:

implementation

AbstractAsset

Asset AbstractMutableAsset

MutableAsset NewAsset

AssetImpl

lifecyclemodel

JDBCAsset

jdbc

CMAsset

ODBCAsset OracleAsset

Oracle8iAsset Oracle9iAsset

coremedia

...

some.project

distribution

client

AssetStub

HTTPAsset SOAPAsset

mapping

AssetAdapter

AbstractA

A AbstractMutableA

MutableA NewA

clientmodule

Oracle9iAImpl

...

...

...

«implements»

Fig. 4. Conceptual Class Diagram of Code Generated from Asset Definitions

– Class objects carry the asset class definitions into the data model (meta
level). They offer reflection comparable to object-oriented programming lan-
guages.

– Instances are created following the factory method pattern [12].

– Query interfaces define possible queries to retrieve assets instances. They
are equipped with methods to formulate query constraints. These constrain
methods are generated for each defined characteristic and relationship and
each comparison operator.

– For collections of asset instances iterators [12] are defined for each asset class.

The generated interfaces reflect the domain model. The abstract classes from
the implementation package shown on the right of figure 4 introduce platform
independent functionality. Classes which implement the interfaces and make use
of the abstract classes are generated by the compiler. For an example see AImpl
in package clientmodule in the class diagram. Sets of classes form modules
which make up a conceptual content management system. These are described
in the subsequent section.

storedelete

lock
commit
abort

new

persistentmutable

Fig. 5. State Diagram for the Asset Instance Life Cycle

5 Modular System Architectures for Asset Management

Open modeling allows users to adjust domain models at any time. This may affect
the model of one user who wishes to change asset definitions, or the models of
a user group and one of its users, who creates a personal variant of the group’s
model.

To dynamically adapt conceptual content management systems to chang-
ing models they are recompiled at runtime. The demand for dynamics leads to
system evolution [17].

The evolution of conceptual content management systems has two aspects:

– the software needs to be modified, and
– existing asset instances need to be maintained.

Typical issues with respect to these two aspects of evolution are:

– Changes performed on behalf of individual users should not have any impact
on others. Therefore, dynamic support for system evolution must not prevent
continuous operation of the software system.

– On the one hand, assets as representations of domain entities cannot au-
tomatically be converted in general. On the other hand, manual instance
conversion is not feasible for typical amounts of asset instances.

– If a user personalizes assets for his own needs, he still will be interested in
changes applied to the original. Through awareness [11] measures he can be
informed about such changes. To be able to review the changes, access to
both the former and the current versions are needed. That is, revisions of
assets and their schemata need to be maintained.

Crucial for both aspects of evolution – software as well as asset instances –
is a modularized system architecture. On evolution steps distinguished system
modules maintain sets of asset instances created under different schemata. They
are produced by the asset compiler and dynamically added or replaced.

For our asset technology we identified a small set of module kinds of a concep-
tual content management system. The conceptual content management system
architecture supports the dynamic combination of instances of the various mod-
ule kinds. These modules share some similarities with components [26, 2] (com-
binability, statelessness, . . .), but in contrast to these they are generated for a
concrete software system. Modules constitute the minimal compilation units of
the generated software which the compiler can add or replace.

m : module for
mapping assets

according to model M
to a standard

component

schema for
model M

(a) Initial Asset Manage-
ment System

m : module for
mapping assets of

model M to a
standard component

ma : module for
converting between
assets of model M
and of model M’

m’ : module for
mapping assets of

model M’ to a
standard component

mm : modul for delegating requests to
module ma (read operations) or module m’

(read and write operations)

schema for
model M’

schema for
model M

(b) Added Modules after one Evolution Step

Fig. 6. Asset Management System Evolution Step

Figure 6 shows an example of the evolution of a user’s domain model. As-
sume that the conceptual content management system shown in fig. 6(a) is in
operation. It simply consists of one module m as the application layer and a
database as the data layer of a layered architecture. Both have been generated
according to a domain model M .

If model M is redefined to become model M ′ the system is recompiled. This
leads to the generation of additional modules which are incorporated for dynamic
system evolution. The result is shown in fig. 6(b). First note that the original
conceptual content management system is maintained as a subsystem of the new
system version. This way existing asset instances are kept intact.

In this example a second database is set up to store asset instances following
model M ′. A module m′ for accessing the database is created similar to m found
in the original conceptual content management system. Two further modules are
added to combine the two subsystems for models M and M ′. These follow the
mediator architecture [28], an important building block of the conceptual content
management system architecture. The mapping module ma serves as a wrapper
lifting assets of M to M ′ (compare [20]). Mapping issues are covered by a module
kind of its own rather than integrating it into the other kinds of modules so that
mappings can be plugged dynamically [16]. The mediation module mm reflects
M ′ in the application layer of the new system version. It routes requests to either
ma or m′. Lookups are forwarded to both these modules and the results are
unified. New asset instances are always created in m′ according to M ′. Update
requests of instances of M lead to their deletion in the subsystem for M and
their recreation in m′.

The two issues with evolution mentioned above are taken into consideration
by this approach. Preserving the existing software as part of a new system ver-
sion leaves it in continuous operation. With the mentioned update policy asset
instances are incrementally converted when needed. This way, users can perform
the task of reviewing the asset instances one by one. More sophisticated policies
might take the mediation module to batch mode when only a certain amount of
instances is left in the outdated schema.

In a similar way configurations for other functionality are set up. E.g., to
store revisions of asset instances these are maintained by distinct subsystems. A
mediation module takes care of the revision control.

The above example introduces the three most important module kinds: client
modules to access standard components managing the assets’ content and data,
mapping modules to adjust schemata, and mediation modules to glue the mod-
ules of a conceptual content management system together. These form the core
of any conceptual content management system. In addition to these, figure 7

server module

assets
content + objects

adapted assets
assets

proxies
assets

unified view
schema 1 schema 2

XML documents
assets

mediation module

distribution module

mapping module

client module

proxies
others' assets

Fig. 7. Asset Management System: Module Kinds and Architectural Overview

shows the remaining two module types. Distribution modules allow the incorpo-
ration of modules residing on different networked computers. Fig. 4 indicates two
possible implementations in package distribution : the HTTP-based trans-
mission of XML documents with a schema generated from the asset definitions
(comparable to the suggestion of [24]) and one for remote method calls using
SOAP. Server modules (not shown in fig. 4) offer the services of a conceptual
content management system following a standard protocol for use by third party
systems. One example is a server module for Web Services [4] with generated
descriptions given in the WDL [9].

6 Concluding Remarks

Our asset model abstracts and generalizes an essential part of the core experi-
ence in database design and information system development. Initial applications

demonstrate that asset-based modeling simplifies information system projects
and increases the reusability of system functionality.

The degree of open schema and dynamic system changeability is substan-
tially improved by a better understanding of the appropriate architecture and
modularization of conceptual content management systems.

In addition we expect that asset-based modeling will greatly improve typical
standard tasks in information systems administration. The very same method-
ology used for domain-specific entity modeling may also be applied to software
entities and, therefore, to information systems themselves. Typical examples
include naming and messaging services, user and rights management or visu-
alization tasks. User interfaces, for example, will benefit significantly from an
asset-based GUI model and UI description. A presentation logic which associates
assets from the application domain and the GUI realm can then be used by a
GUI engine to render such UI descriptions and exploit the dynamic openness of
asset management for user interface adaptation.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer-Verlag New York, Inc., 1996.

2. U. Aßmann. Invasive Software Composition. Springer-Verlag, 2003.

3. Thomas Büchner. Entwurf und Realisierung eines Java-Frameworks zur in-
haltlichen Erschließung von Informationsobjekten. Master’s thesis, Software Sys-
tems Department, Technical University Hamburg-Harburg, Germany, 2002.

4. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture, W3C Working Group
Note. http://www.w3.org/TR/ws-arch/, 11 February 2004.

5. Alex Borgida and Ronald J. Brachman. Conceptual Modeling with Description
Logics. In Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter Patel-Schneider, editors, The Description Logic Handbook: Theory, Im-
plementation and Applications, pages 349–372. Cambridge University Press, 2003.

6. Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Topics in Information Systems. Springer-Verlag, 1984.

7. Matthias Bruhn. The Warburg Electronic Library in Hamburg: A Digital Index of
Political Iconography. Visual Resources, XV:405–423, 2000.

8. Ernst Cassirer. Die Sprache, Das mythische Denken, Phänomenologie der Erken-
ntnis, volume 11-13 Philosophie der symbolischen Formen of Gesammelte Werke.
Felix Meiner Verlag GmbH, Hamburger Ausgabe edition, 2001-2002.

9. Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer, and
Sanjiva Weerawarana. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. www.w3.org/TR/wsdl20/, March 2004.

10. Dov Dori. The Visual Semantic Web: Unifying Human and Machine Knowl-
edge Representations with Object-Process Methodology. In Isabel F. Cruz, Vipul
Kashyap, Stefan Decker, and Rainer Eckstein, editors, Proceedings of SWDB’03,
The first International Workshop on Semantic Web and Databases, Co-located with
VLDB 2003, Humboldt-Universität, Berlin, Germany, 7.-8. September 2003.

11. P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces. In
Proceedings of ACM CSCW 92 Conference on Computer-Supported Work, pages
107–114, 1992.

12. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements od Reusable Object-Oriented Software. Addison-Wesley, 1994.

13. Graham Hamilton. JavaBeans (Version 1.01-A). Sun Microsystems, Inc., 8. Au-
gust 1997.

14. Manfred A. Jeusfeld. Generating Queries from Complex Type Definitions. In
Franz Baader, Martin Buchheit, Manfred A. Jeusfeld, and Werner Nutt, editors,
Reasoning about Structured Objects: Knowledge Representation Meets Databases,
Proceedings of 1st Workshop KRDB’94, CEUR Workshop Proceedings, 1994.

15. H. Knublauch, M. Sedlmayr, and T. Rose. Design Patterns for the Implementation
of Constraints on JavaBeans. In Tagungsband Net.Object Days 2000, Erfurt, 9.-12.
Oktober. tranSIT GmbH, 2000.

16. Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration with plug-
gable composite adapters. In Software Architectures and Component Technology.
Kluwer, 2000.

17. Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John My-
lopoulos, Joachim W. Schmidt, Carson Woo, and Eric Yu. A Three-Faceted View
of Information Systems. Communications of the ACM, 41(12):64–70, 1998.

18. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical Report
omg/2003-06-01, OMG, 12th June 2003.

19. C.S. Peirce. Collected Papers of Charles Sanders Peirce. Harvard University Press,
Cambridge, 1931.

20. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334–350, 2001.

21. Joachim W. Schmidt and Hans-Werner Sehring. Conceptual Content Modeling
and Management: The Rationale of an Asset Language. In Manfred Broy and
Alexandre V. Zamulin, editors, Perspectives of System Informatics, 5th Interna-
tional Andrei Ershov Memorial Conference, PSI 2003, volume 2890 of Lecture
Notes in Computer Science, pages 469–493. Springer, July 2003.

22. J.W. Schmidt, H.-W. Sehring, M. Skusa, and A. Wienberg. Subject-Oriented Work:
Lessons Learned from an Interdisciplinary Content Management Project. In Alber-
tas Caplinskas and Johann Eder, editors, Advances in Databases and Information
Systems, 5th East European Conference, ADBIS 2001, volume 2151 of Lecture
Notes in Computer Science, pages 3–26. Springer, September 2001.

23. Hans-Werner Sehring. Report on an Asset Definition, Query, and Manipulation
Language. Version 1.0. Technical report, Software Systems Department, Technical
University Hamburg-Harburg, Germany, 2003.

24. German Shegalov, Michael Gillmann, and Gerhard Weikum. XML-enabled work-
flow management for e-services across heterogeneous platforms. VLDB Journal,
10(1):91–103, 2001.

25. John F. Sowa. Knowledge Representation, Logical, Philosophical, and Computa-
tional Foundations. Brooks/Cole, Thomson Learning, 2000.

26. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

27. Homepage of the Warburg Electronic Library. http://www.welib.de, 2004.
28. G. Wiederhold. Mediators in the Architecture of Future Information Systems.

IEEE Computer, 25:38–49, 1992.
29. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,

University of Toronto, 1995.

